Showing posts with label Biotechnology. Show all posts
Showing posts with label Biotechnology. Show all posts

Tuesday, September 8, 2015

MIT Researchers Develop Basic Computing Elements for Bacteria

Researchers develop basic computing elements for bacteria


MIT July 9, 2015

The “friendly” bacteria inside our digestive systems are being given an upgrade, which may one day allow them to be programmed to detect and ultimately treat diseases such as colon cancer and immune disorders.

[caption id="attachment_264" align="aligncenter" width="650"]MIT Researchers Develop Basic Computing Elements for Bacteria www.syntheticbiologytechnology.com-037 The illustration depicts Bacteroides thetaiotaomicron (white) living on mammalian cells in the gut (large pink cells coated in microvilli) and being activated by exogenously added chemical signals (small green dots) to express specific genes, such as those encoding light-generating luciferase proteins (glowing bacteria).[/caption]

In a paper published today in the journal Cell Systems, researchers at MIT unveil a series of sensors, memory switches, and circuits that can be encoded in the common human gut bacterium Bacteroides thetaiotaomicron.

These basic computing elements will allow the bacteria to sense, memorize, and respond to signals in the gut, with future applications that might include the early detection and treatment of inflammatory bowel disease or colon cancer.

Researchers have previously built genetic circuits inside model organisms such as E. coli. However, such strains are only found at low levels within the human gut, according to Timothy Lu, an associate professor of biological engineering and of electrical engineering and computer science, who led the research alongside Christopher Voigt, a professor of biological engineering at MIT.

“We wanted to work with strains like B. thetaiotaomicron that are present in many people in abundant levels, and can stably colonize the gut for long periods of time,” Lu says.

The team developed a series of genetic parts that can be used to precisely program gene expression within the bacteria. “Using these parts, we built four sensors that can be encoded in the bacterium’s DNA that respond to a signal to switch genes on and off inside B. thetaiotaomicron,” Voigt says. These can be food additives, including sugars, which allow the bacteria to be controlled by the food that is eaten by the host, Voigt adds.

Bacterial “memory”

To sense and report on pathologies in the gut, including signs of bleeding or inflammation, the bacteria will need to remember this information and report it externally. To enable them to do this, the researchers equipped B. thetaiotaomicron with a form of genetic memory. They used a class of proteins known as recombinases, which can record information into bacterial DNA by recognizing specific DNA addresses and inverting their direction.

The researchers also implemented a technology known as CRISPR interference, which can be used to control which genes are turned on or off in the bacterium. The researchers used it to modulate the ability of B. thetaiotaomicron to consume a specific nutrient and to resist being killed by an antimicrobial molecule.

The researchers demonstrated that their set of genetic tools and switches functioned within B. thetaiotaomicroncolonizing the gut of mice. When the mice were fed food containing the right ingredients, they showed that the bacteria could remember what the mice ate.

Expanded toolkit

The researchers now plan to expand the application of their tools to different species of Bacteroides. That is because the microbial makeup of the gut varies from person to person, meaning that a particular species might be the dominant bacteria in one patient, but not in others.

“We aim to expand our genetic toolkit to a wide range of bacteria that are important commensal organisms in the human gut,” Lu says.

The concept of using microbes to sense and respond to signs of disease could also be used elsewhere in the body, he adds.

In addition, more advanced genetic computing circuits could be built upon this genetic toolkit in Bacteroides to enhance their performance as noninvasive diagnostics and therapeutics.

“For example, we want to have high sensitivity and specificity when diagnosing disease with engineered bacteria,” Lu says. “To achieve this, we could engineer bacteria to detect multiple biomarkers, and only trigger a response when they are all present.”

Tom Ellis, group leader of the Centre for Synthetic Biology at Imperial College London, who was not involved in the research, says the paper takes many of the best tools that have been developed for synthetic biology applications with E. coli and moves them over to use with a common class of gut bacteria.

“Whereas others have developed tools and applications for engineering genetic circuits, or biosensors, in bacteria that are then placed in the gut, this paper stands out from the crowd by first engineering a member of the Bacteroides genus, the most common type of bacteria found in our guts,” Ellis says. The study has so far shown the efficacy of the approach in mice, and there will be a long road ahead before it can be approved for use in humans, Ellis says.

However, the paper really opens up the possibility of one day having engineered cells resident in our guts for long periods of time, he says. “These could do tasks like sensing and recording, or even in-situ synthesis of therapeutic molecules as and when they are needed.”

News Release Source : Researchers develop basic computing elements for bacteria

Image Credit : MIT

Saturday, August 8, 2015

Synthetic Biology Students Compete in iGEM 2015

Synthetic Biology Students Compete in iGEM 2015 Giant Jamboree


12th annual conference and competition to showcase student innovations in genetically engineered biological systems

CAMBRIDGE, Mass., Aug. 5, 2015 /PRNewswire/

iGEM, the largest synthetic biology community and premiere synthetic biology competition, today announced that more than 250 student-led teams will present their innovations at the iGEM Giant Jamboree,September 24-28, 2015 at the Hynes Convention Center in Boston, MA. The 12th annual iGEM 2015 Giant Jamboree gathers the industry's brightest minds for a five-day conference to collaborate on education and advancement of the synthetic biology field.

[caption id="attachment_256" align="aligncenter" width="722"]Synthetic Biology Students Compete in iGEM 2015 www.syntheticbiologytechnology.com-036 Synthetic Biology Students Compete in iGEM 2015[/caption]

Over 4600 participants on 280 teams registered to take part in the 2015 competition. Teams represent countries across the world including North America (82), Latin America (20), Europe (72), Asia (104), and Africa (2). Students' knowledge of synthetic biology is put to the ultimate test as teams work for months to solve real-world challenges by creating novel genetically engineered systems. Their local experiences in a global community impart unique perspective in the field, especially as projects span a broad range across 15 different tracks —including energy, environment, food and nutrition, manufacturing, health and medicine, community labs, among others.

After receiving a standard kit of BioBrick biological parts from the iGEM Registry of Standard Biological Parts, an open library of biological parts that can be mixed and matched to build synthetic biology devices and systems, each team manages their own projects, advocates for their research, and secures funding. Teams are also challenged to actively consider and address the safety, security and environmental implications of their work.

"Much more than an annual student competition, the iGEM Giant Jamboree is also an international incubator for the synthetic biology industry that has spun out more than 20 competition projects into new startups," said Randy Rettberg, iGEM Foundation president. "With a spotlight on innovation, the iGEM Giant Jamboree also is about collaboration and giving back. iGEM competition teams submit biological parts from their projects to the Registry of Standard Biological Parts in a cycle that helps tomorrow's iGEM teams and research labs."

The iGEM Giant Jamboree five-day conference features today's leaders in synthetic biology. Team presentations and exhibition hall poster sessions showcase the latest research. Workshops, panel discussions and much more inspire and educate future synthetic biologists, introducing the next generation of elite researchers and scientists—the entrepreneurs, lab leaders, and workforce of biotechnology's future. The competition and conference concludes with an awards gala where winners will be presented on Monday, September 28.  Through the iGEM competition, the iGEM Foundation promotes education, safety and security, policy and regulation, multidisciplinary teamwork, technology, community, and open sharing.

Additional Resources

About the iGEM Foundation
The iGEM Foundation is dedicated to education and competition, advancement of synthetic biology, and the development of open community and collaboration. iGEM, the International Genetically Engineered Machine Competition, is a non-profit organization that inspires future synthetic biologists by hosting high school and collegiate level competitions in synthetic biology. iGEM also maintains the Registry of Standard Biological Parts with over 20,000 specified genetic parts—the world's largest collection of BioBricks, open source DNA parts.

SOURCE iGEM
RELATED LINKS
http://igem.org

News Release Source : Synthetic Biology Students Compete in iGEM 2015 Giant

Image Credit : iGEM

Thursday, August 28, 2014

Fully Functional Organ from Scratch in a Living Animal by Transplanting Cells

Fully functional immune organ grown in mice from lab-created cells


Scientists have for the first time grown a complex, fully functional organ from scratch in a living animal by transplanting cells that were originally created in a laboratory. The advance could in future aid the development of ‘lab-grown’ replacement organs.




[caption id="attachment_211" align="aligncenter" width="550"]Fully Functional Organ from Scratch in a Living Animal by Transplanting Cells www.syntheticbiologytechnology.com-029 Fully Functional Organ from Scratch in a Living Animal by Transplanting Cells[/caption]

Fibroblasts transformed into induced thymic epithelial cells (iTEC) in vitro (left, iTEC in green). iTEC transplanted onto the mouse kidney form an organised and functional mini-thymus (right, kidney cells in pink, thymus cells in dark blue)


Researchers from the MRC Centre for Regenerative Medicine, at the University of Edinburgh, took cells called fibroblasts from a mouse embryo and converted them directly into a completely unrelated type of cell - specialised thymus cells- using a technique called ‘reprogramming’. When mixed with other thymus cell types and transplanted into mice, these cells formed a replacement organ that had the same structure, complexity and function as a healthy native adult thymus. The reprogrammed cells were also capable of producing T cells - a type of white blood cell important for fighting infection - in the lab.


The researchers hope that with further refinement their lab-made cells could form the basis of a readily available thymus transplant treatment for people with a weakened immune system. They may also enable the production of patient-matched T cells. The research is published today in the journal Nature Cell Biology.

The thymus, located near the heart, is a vital organ of the immune system. It produces T cells, which guard against disease by scanning the body for malfunctioning cells and infections. When they detect a problem, they mount a coordinated immune response that tries to eliminate harmful cells, such as cancer, or pathogens like bacteria and viruses.

People without a fully functioning thymus can’t make enough T cells and as a result are very vulnerable to infections. This can be a particular problem for some patients who need a bone marrow transplant (for example to treat leukaemia), as a functioning thymus is needed to rebuild the immune system once the transplant has been received. The problem can also affect children; around one in 4,000 babies born each year in the UK have a malfunctioning or completely absent thymus (due to conditions such as DiGeorge syndrome).

Thymus disorders can sometimes be treated with infusions of extra immune cells, or transplantation of a thymus organ soon after birth, but both are limited by a lack of donors and problems matching tissue to the recipient.

Being able to create a complete transplantable thymus from cells in a lab would be a huge step forward in treating such conditions. And while several studies have shown it is possible to produce collections of distinct cell types in a dish, such as heart or liver cells, scientists haven’t yet been able to grow a fully intact organ from cells created outside the body.

Professor Clare Blackburn from the MRC Centre for Regenerative Medicine at the University of Edinburgh, who led the research, said:

“The ability to grow replacement organs from cells in the lab is one of the ‘holy grails’ in regenerative medicine. But the size and complexity of lab-grown organs has so far been limited. By directly reprogramming cells we’ve managed to produce an artificial cell type that, when transplanted, can form a fully organised and functional organ. This is an important first step towards the goal of generating a clinically useful artificial thymus in the lab.”

The researchers carried out their study using cells (fibroblasts) taken from mouse embryos. By increasing levels of a protein called FOXN1, which guides development of the thymus during normal organ development in the embryo, they were able to directly reprogramme these cells to become a type of thymus cell called thymic epithelial cells. These are the cells that provide the specialist functions of the thymus, enabling it to make T cells.

The induced thymic epithelial cells (or iTEC) were then combined with other thymus cells (to support their development) and grafted onto the kidneys of genetically identical mice. After four weeks, the cells had produced well-formed organs with the same structure as a healthy thymus, with clearly defined regions (known as the cortex and medulla). The iTEC cells were also able to produce different types of T cells from immature blood cells in the lab.

Dr Rob Buckle, Head of Regenerative Medicine at the MRC, said:

“Growing ‘replacement parts’ for damaged tissue could remove the need to transplant whole organs from one person to another, which has many drawbacks – not least a critical lack of donors. This research is an exciting early step towards that goal, and a convincing demonstration of the potential power of direct reprogramming technology, by which once cell type is converted to another. However, much more work will be needed before this process can be reproduced in the lab environment, and in a safe and tightly controlled way suitable for use in humans.”

The study was funded by Leukaemia & Lymphoma Research, Darwin Trust of Edinburgh, the MRC and the European Union Seventh Framework Programme.

News Release Source : Fully functional immune organ grown in mice from lab-created cells

Successfully Established a Three-Dimensional Culture Model of the Developing Brain

BRAINS ON DEMAND


August 28, 2013


Complex human brain tissue has been successfully developed in a three-dimensional culture system established in an Austrian laboratory. The method described in the current issue of NATURE allows pluripotent stem cells to develop into cerebral organoids – or "mini brains" – that consist of several discrete brain regions. Instead of using so-called patterning growth factors to achieve this, scientists at the renowned Institute of Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences (OeAW) fine-tuned growth conditions and provided a conducive environment. As a result, intrinsic cues from the stem cells guided the development towards different interdependent brain tissues. Using the "mini brains", the scientists were also able to model the development of a human neuronal disorder and identify its origin – opening up routes to long hoped-for model systems of the human brain.




[caption id="attachment_206" align="aligncenter" width="500"]Successfully Established a Three-Dimensional Culture Model of the Developing Brain www.syntheticbiologytechnology.com-028 Successfully Established a Three-Dimensional Culture                                            Model of the Developing Brain[/caption]

The development of the human brain remains one of the greatest mysteries in biology. Derived from a simple tissue, it develops into the most complex natural structure known to man. Studies of the human brain’s development and associated human disorders are extremely difficult, as no scientist has thus far successfully established a three-dimensional culture model of the developing brain as a whole. Now, a research group lead by Dr. Jürgen Knoblich at the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) has changed just that.



Brain Size Matters


Starting with established human embryonic stem cell lines and induced pluripotent stem (iPS) cells, the group identified growth conditions that aided the differentiation of the stem cells into several brain tissues. While using media for neuronal induction and differentiation, the group was able to avoid the use of patterning growth factor conditions, which are usually applied in order to generate specific cell identities from stem cells. Dr. Knoblich explains the new method: "We modified an established approach to generate so-called neuroectoderm, a cell layer from which the nervous system derives. Fragments of this tissue were then maintained in a 3D-culture and embedded in droplets of a specific gel that provided a scaffold for complex tissue growth. In order to enhance nutrient absorption, we later transferred the gel droplets to a spinning bioreactor. Within three to four weeks defined brain regions were formed."


Already after 15 – 20 days, so-called "cerebral organoids" formed which consisted of continuous tissue (neuroepithelia) surrounding a fluid-filled cavity that was reminiscent of a cerebral ventricle. After 20 – 30 days, defined brain regions, including a cerebral cortex, retina, meninges as well as choroid plexus, developed. After two months, the mini brains reached a maximum size, but they could survive indefinitely (currently up to 10 months) in the spinning bioreactor. Further growth, however, was not achieved, most likely due to the lack of a circulation system and hence a lack of nutrients and oxygen at the core of the mini brains.


Microcephaly in Mini Brains

The new method also offers great potential for establishing model systems for human brain disorders. Such models are urgently needed, as the commonly used animal models are of considerably lower complexity, and often do not adequately recapitulate the human disease. Knoblich’s group has now demonstrated that the mini brains offer great potential as a human model system by analysing the onset of microcephaly, a human genetic disorder in which brain size is significantly reduced. By generating iPS cells from skin tissue of a microcephaly patient, the scientists were able to grow mini brains affected by this disorder. As expected, the patient derived organoids grew to a lesser size. Further analysis led to a surprising finding: while the neuroepithilial tissue was smaller than in mini brains unaffected by the disorder, increased neuronal outgrowth could be observed. This lead to the hypothesis that, during brain development of patients with microcephaly, the neural differentiation happens prematurely at the expense of stem and progenitor cells which would otherwise contribute to a more pronounced growth in brain size. Further experiments also revealed that a change in the direction in which the stem cells divide might be causal for the disorder.


"In addition to the potential for new insights into the development of human brain disorders, mini brains will also be of great interest to the pharmaceutical and chemical industry," explains Dr. Madeline A. Lancaster, team member and first author of the publication. "They allow for the testing of therapies against brain defects and other neuronal disorders. Furthermore, they will enable the analysis of the effects that specific chemicals have on brain development."


 Original publication Nature: M. A. Lancaster, M. Renner, C.-A. Martin, D. Wenzel, L. S. Bicknell, M. E. Hurles, T. Homfray, J. S. Penninger, A. P. Jackson & J. A. Knoblich. Cerebral organoids derived from pluripotent stem cells model human brain development and microcephaly. doi: 10.1038/nature12517

News Release Source :  BRAINS ON DEMAND

Thursday, June 5, 2014

Scientists Use DNA Origami to Create 2-D Structures

Nano-Platform Ready: Scientists Use DNA Origami to Create 2-D Structures


June 2, 2014


Scientists at New York University and the University of Melbourne have developed a method using DNA origami to turn one-dimensional nano materials into two dimensions. Their breakthrough, published in the latest issue of the journal Nature Nanotechnology, offers the potential to enhance fiber optics and electronic devices by reducing their size and increasing their speed.




[caption id="attachment_183" align="alignleft" width="500"]Scientists Use DNA Origami to Create 2-D Structures www.syntheticbiologytechnology.com-023 Scientists Use DNA Origami to Create 2-D Structures[/caption]

"We can now take linear nano-materials and direct how they are organized in two dimensions, using a DNA origami platform to create any number of shapes," explains NYU Chemistry Professor Nadrian Seeman, the paper's senior author, who founded and developed the field of DNA nanotechnology, now pursued by laboratories around the globe, three decades ago.


Seeman's collaborator, Sally Gras, an associate professor at the University of Melbourne, says, "We brought together two of life's building blocks, DNA and protein, in an exciting new way. We are growing protein fibers within a DNA origami structure."


DNA origami employs approximately two hundred short DNA strands to direct longer strands in forming specific shapes. In their work, the scientists sought to create, and then manipulate the shape of, amyloid fibrils—rods of aggregated proteins, or peptides, that match the strength of spider's silk.


To do so, they engineered a collection of 20 DNA double helices to form a nanotube big enough (15 to 20 nanometers—just over one-billionth of a meter—in diameter) to house the fibrils.


The platform builds the fibrils by combining the properties of the nanotube with a synthetic peptide fragment that is placed inside the cylinder. The resulting fibril-filled nanotubes can then be organized into two-dimensional structures through a series of DNA-DNA hybridization interactions.


"Fibrils are remarkably strong and, as such, are a good barometer for this method's ability to form two-dimensional structures," observes Seeman. "If we can manipulate the orientations of fibrils, we can do the same with other linear materials in the future."


Seeman points to the promise of creating two-dimensional shapes on the nanoscale.


"If we can make smaller and stronger materials in electronics and photonics, we have the potential to improve consumer products," Seeman says. "For instance, when components are smaller, it means the signals they transmit don't need to go as far, which increases their operating speed. That's why small is so exciting—you can make better structures on the tiniest chemical scales."




Other NYU researchers included Anuttara Udomprasert, Ruojie Sha, Tong Wang, Paramjit Arora, and James W. Canary.


The research was supported by grants from the National Institute of General Medical Sciences, part of the National Institutes of Health (GM-29554), the National Science Foundation (CMMI-1120890, CCF-1117210), the Army Research Office (MURI W911NF-11-1-0024), the Office of Naval Research (N000141110729, N000140911118), an Australian Nanotechnology Network Overseas Travel Fellowship, a Melbourne Abroad Travelling Scholarship, the Bio21 Institute and Particulate Fluids Processing Centre. The work was carried out, in part, at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences.




News Release Source :  Nano-Platform Ready: Scientists Use DNA Origami to Create 2-D Structures